Parameter estimation for nonlinear dynamical adjustment models

نویسندگان

  • Yongsong Xiao
  • Na Yue
چکیده

A recursive generalized least squares algorithm and a filtering based least squares algorithm are developed for input nonlinear dynamical adjustment models with memoryless nonlinear blocks followed by linear dynamical blocks. The basic idea is to use the filtering technique and to replace the unknown terms in the information vectors with their estimates. The simulation results show the performance of the proposed algorithms. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian state and parameter estimation of uncertain dynamical systems

The focus of this paper is Bayesian state and parameter estimation using nonlinear models. A recently developed method, the particle filter, is studied that is based on stochastic simulation. Unlike the well-known extended Kalman filter, the particle filter is applicable to highly nonlinear models with non-Gaussian uncertainties. Recently developed techniques that improve the convergence of the...

متن کامل

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

Parameter Estimation In Nonlinear Time-Varying Systems Through Takagi-Sugeno Fuzzy Models And Wavelets

In this paper, a parameter estimation problem for a Takagi-Sugeno (TS) fuzzy dynamical system is formulated under the assumption that the premises in the membership functions are known. A linear expression in consequent parameters is obtained under this assumption. If the system is timevarying (TV), the parameters can be determined by recursive estimation techniques. As an alternate approach, t...

متن کامل

Guaranteed Nonlinear Parameter Estimation for Continuous - Time Dynamical Models

This paper is about parameter estimation for models described by a continuoustime state equation from discrete-time measurements. Guaranteed solutions to this problem are proposed in probabilistic and bounded-error contexts, based on Müller’s theorems and interval analysis. In a probabilistic context where parameter estimation boils down to parameter optimization, this makes it possible to char...

متن کامل

Data Assimilation in Structural Dynamics: Extended-, Ensemble Kalman and Particle Filters

Combined state and parameter estimation of dynamical systems plays a crucial role in extracting system response from noisy measurements. A wide variety of methods have been developed to deal with the joint state-parameter estimation of nonlinear dynamical systems. The Extended Kalman Filter method is a popular approach for the joint systemparameter estimation of nonlinear systems. This method c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011